ATM Case Study

@ 2005 Pearson Education, Inc. All rights reserved.

Requirements

@ 2005 Pearson Education, Inc. All rights reserved.

* Object-oriented design (OOD) process using
UML

— Chapters 3 to 8, 10
* Object-oriented programming (OOP)
implementation
— Appendix J

@ 2005 Pearson Education, Inc. All rights reserved.

2.9 (Optional) Software Engineering Case
Study (Cont.)

* Requirements Document

— New automated teller machine (ATM)
— Allows basic financial transaction
* View balance, withdraw cash, deposit funds
— User interface
» Display screen, keypad, cash dispenser, deposit slot
— ATM session

+ Authenticate user, execute financial transaction

@ 2005 Pearson Education, Inc. All rights reserved.

['welcome!
Please enter your account number:
Sereen .
Enter your PIN: 54321
Cash Dispenser
Keypad
Deposit Slot.
Fig. 2.17 | Automated teller machine user interface.

@ 2005 Pearson Education, Inc. All rights reserved.

Main menu
1 - View my balance
2 - Withdraw cash
3 - Deposit funds

4 4 - Exit

| Enter a choice:

Fig. 2.18 | ATM main menu.

@

@ 2005 Pearson Education, Inc. All rights reserved.

'Withdrawal menu

1- 320 4 - 3100

2 - 340 5 - 5200

3 - 360 6 - Cancel transaction
- Choose a withdrawal amount:

Fig. 2.19 | ATM withdrawal menu.

@ 2005 Pearson Education, Inc. All rights reserved.

* Analyzing the ATM System

— Requirements gathering
— Software life cycle

+ Waterfall model

* Interactive model

— Use case modeling

* Use case Diagram

— Model the interactions between clients and its use cases
— Actor

» External entity

< »

@ 2005 Pearson Education, Inc. All rights reserved.

10

/ View Account Balance
Withdraw Cash
User \

Fig. 2.20 | Use case diagram for the ATM system from the user's perspective.

Deposit. Funds

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

"

View Account Balance

/ Withdraw Cash
\ Deposit. Funds
User

Transfer funds
Between Accounts

Fig. 2.21 | Use case diagram for a modified version of our ATM system that also allows
users to transfer money between accounts.

= =

@ 2005 Pearson Education, Inc. All rights reserved.

12
« UML diagram types
— Model system structure
* Class diagram
— Models classes, or “building blocks™ of a system
— screen, keypad, cash dispenser, deposit slot.
[« »]

@ 2005 Pearson Education, Inc. All rights reserved.

13

— Model system behavior
* Use case diagrams
— Model interactions between user and a system
* State machine diagrams
— Model the ways in which an object changes state
* Activity diagrams
— Models an object’s activity during program execution
» Communication diagrams (collaboration diagrams)
— Models the interactions among objects
— Emphasize what interactions occur
» Sequence diagrams
— Models the interactions among objects
— Emphasize when interactions occur

@ 2005 Pearson Education, Inc. All rights reserved.

14

Begin Designing the
ATM System

@ 2005 Pearson Education, Inc. All rights reserved.

15

* Begin designing the ATM system

— Analyze the nouns and noun phrases

— Introduce UML class diagrams

= =

@ 2005 Pearson Education, Inc. All rights reserved.

16

* Key nouns and noun phrases in
requirements document
— Some are attributes of other classes
— Some do not correspond to parts of the system

— Some are classes

* To be represented by UML class diagrams

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

17

Nouns and noun phrases in the requirements document

bank money / funds account number
ATM screen PIN

user keypad bank database
customer cash dispenser balance inquiry
transaction $20 bill / cash withdrawal
account deposit slot deposit

balance deposit envelope

Fig. 3.19 | Nouns and noun phrases in the requirements document.

@ 2005 Pearson Education, Inc. All rights reserved.

18

* UML class diagrams

— Top compartment contains name of the class

— Middle compartment contains class’s attributes or
instance variables

— Bottom compartment contains class’s operations or
methods

@ 2005 Pearson Education, Inc. All rights reserved.

19

ATM

Fig. 3.20 | Representing a class in the UML using a class diagram.

< »

@ 2005 Pearson Education, Inc. All rights reserved.

20

* UML class diagrams

— Allows suppression of class attributes and operations
« Called an elided diagram

— Solid line that connects two classes represents an
association

* numbers near end of each line are multiplicity values

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

21

I Executes = 0./ N
cumentTransaction

Fig. 3.21 | Class diagram showing an association among classes.

@ 2005 Pearson Education, Inc. All rights reserved.

22

Symbol Meaning

0 None

1 One

m An integer value

0..1 Zero or one

m, n mor n

m..n At least sz, but not more than n

i< Any non-negative integer (zero or more)
0..* Zero or more (identical to *)

1. One or more

Fig. 2.22 | Multiplicity types.

@ 2005 Pearson Education, Inc. All rights reserved.

23

 UML class diagrams

— Solid diamonds attached to association lines
indicate a composition relationship

— Hollow diamonds indicate aggregation — a weaker
form of composition

< »

@ 2005 Pearson Education, Inc. All rights reserved.

24

DepositSlot -l——’ ATM @ CashDispenser

Fig. 3.23 | Class diagram showing composition relationships.

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

25

Auchenticates user against

Y|
4 Aceessesimodifies an
account balanee through

2 I
Contains

» ' - 0-.* -

Fig. 2.24 | Class diagram for the ATM system model.

@ 2005 Pearson Education, Inc. All rights reserved.

26

Fig. 3.25 | Class diagram showing composition relationships of a class Car.

@ 2005 Pearson Education, Inc. All rights reserved.

27

Authenticates user against

» ' I -
| - Fecessesimodifies an
account balanee through

1
Containg

. ‘ o “‘

Fig. 3.26 | Class diagram for the ATM system model including class Deposit.

@ 2005 Pearson Education, Inc. All rights reserved.

28

Identifying Class
Attributes

® 2005 Pearson Education, Inc. All rights reserved.

* Identifying attributes

29

Look for descriptive words and phrases in the

requirements document

Create attributes and assign them to classes

Each attribute is given an attribute type

Some attributes may have an initial value

Some classes may end up without any attributes

* Additional attributes may be added later on as the design and
implementation process continues

Reference-type attributes are modeled more clearly as

associations

@ 2005 Pearson Education, Inc. All rights reserved.

30

, Descriptive words and phrases ==

ATM

user is authenticated

Balancelnguiry account number
Withdrawal account number

amount

account number
Daposit amount
BankDatabase

account number
Account PIN

Balance

[ne descriptive words or phrases]

Screen

Keypad
CashDispenser
DepositSlot

Fig. 4.23 | Descriptive words and phrases from the ATM requirements.

[no descriptive words or phrases]
[no descriptive words or phrases]
begins each day loaded with 500 $20 bills

[ne descriptive words or phrases]

@ 2005 Pearson Education, Inc. All rights reserved.

At early stages in the design process,
classes often lack attributes (and
operations). Such classes should not be
eliminated, however, because attributes
(and operations) may become evident in
the later phases of design and

implementation.

ATM
UserButhenticated | Boolean = false

Balancelnquiry

accounthumber : Integer

Withdrawal

3

< »

@ 2005 Pearson Education, Inc. All rights reserved.

Account
accountMumber | Integer
pin : Integer
availableBalance : Double
totalBalance : Double

Screen

accountMumber ; Integer
amount - Double

Deposit

Keypad

accountMumber | Integer
amount - Double

BankDatabase

CashDispenser

_count ! Integer = 500

DepaositSlot

Fig. 4.24 | Classes with attributes.

32

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

33

Identifying Object’s
State and Activities

» State Machine Diagrams

Commonly called state diagram
Model several states of an object

@ 2005 Pearson Education, Inc. All rights reserved.

34

Show under what circumstances the object changes state

Focus on system behavior
UML representation
* State
— Rounded rectangle
« Initial state
— Solid circle
* Transitions
— Arrows with stick arrowheads

@ 2005 Pearson Education, Inc. All rights reserved.

35

bank database authenticates user

. b)
@ = Usernotauthenticated | User authenticated

Lser exits system

Fig. 5.29 | State diagram for the ATM object.

= =

@ 2005 Pearson Education, Inc. All rights reserved.

36

Software designers do not generally create state
diagrams showing every possible state and state
transition for all attributes—there are simply too
many of them. State diagrams typically show
only Kkey states and state transitions.

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

37

* Activity Diagrams
— Focus on system behavior
— Model an object’s workflow during program execution

— Model the actions the object will perform and in what
order

— UML representation

» Action state (rectangle with its left and right sides replaced
by arcs curving outwards)

» Action order (arrow with a stick arrowhead)
* Initial state (solid circle)

* Final state (solid circle enclosed in an open circle)

= =

@ 2005 Pearson Education, Inc. All rights reserved.

38

!

get balance of account from database

i

display balance on screen

.

Fig. 5.30 | Activity diagram for a Balancelnquiry object.

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

39

famount <= available balance|

Jrfficiont. cash availshle]

Fig. 5.31 | Activity diagram for a withdrawal transaction.

@ 2005 Pearson Education, Inc. All rights reserved.

[deposit emvelaps |
ot recereed |

[depozit ernvelops received]

Fig. 5.32 | Activity diagram for a deposit transaction.

@ 2005 Pearson Education, Inc. All rights reserved.

41

Identifying Class
Operations

@ 2005 Pearson Education, Inc. All rights reserved.

42

* Identifying operations

— Examine key verbs and verb phrases in the requirements
document

* Modeling operations in UML
— Each operation is given an operation name, a parameter
list and a return type:

* operationName (parameterl , parameter2, ..., parameterN)
: refurn fype

« Each parameter has a parameter name and a parameter type
— parameterName : parameterType

@ 2005 Pearson Education, Inc. All rights reserved.

43

— Some operations may not have return types yet

* Remaining return types will be added as design and
implementation proceed

* Identifying and modeling operation parameters

— Examine what data the operation requires to perform its
assigned task

— Additional parameters may be added later on

@ 2005 Pearson Education, Inc. All rights reserved.

44

Class Verbs and verb phrases

ATM executes financial transactions

BalancelInquiry [mone in the requirements document]

Withdrawal [none in the requirements document]

Deposit [none in the requirements document]

BankDatabase authenticates a user, retrieves an account balance, credits a deposit
amount to an account, debits a withdrawal amount from an account

Account retrieves an account balance, credits a deposit amount to an account,
debits a withdrawal amount from an account

Screen displays a message to the user

Keypad receives numeric input from the user

CashDispenser dispenses cash, indicates whether it contains enough cash to satisfy a
withdrawal request

Depositslot receives a deposit envelope

Fig. 6.20 | Verbs and verb phrases for each class in the ATM system.

@ 2005 Pearson Education, Inc. All rights reserved.

45

Fig. 6.21 | Classes in the ATM system with attributes and operations.

@ 2005 Pearson Education, Inc. All rights reserved.

Fig. 6.22 | Class BankDatabase with operation parameters.

@ 2005 Pearson Education, Inc. All rights reserved.

47

Fig. 6.23 | Class Account with operation parameters.

@ 2005 Pearson Education, Inc. All rights reserved.

Fig. 6.24 | Class Screen with operation parameters.

@ 2005 Pearson Education, Inc. All rights reserved.

49

Fig. 6.25 | Class CashDispenser with operation parameters.

@ 2005 Pearson Education, Inc. All rights reserved.

Collaboration Among
Objects

@ 2005 Pearson Education, Inc. All rights reserved.

51

* Collaborations

— When objects communicate to accomplish task
* Accomplished by invoking operations (methods)

— One object sends a message to another object

= =

@ 2005 Pearson Education, Inc. All rights reserved.

52

* Identifying the collaborations in a system

— Read requirements document to find
* What ATM should do to authenticate a use
» What ATM should do to perform transactions
— For each action, decide
* Which objects must interact
— Sending object

— Receiving object

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

53

to an object

sends the message... of class...

ATM displayMessage Screen
getInput Feypad
authenticateUser BankDatabase
execute BalanceInquiry
execute Withdrawal
Execute Deposit

BalanceInguiry getAvailableBalance BankDatabase
getTotalBalance BankDatabase
displayMessage Screen

Withdrawal displayMessage Screen
getInput Keypad
getAvailableBalance BankDatabase
issufficientCashAvailable CashDispenser
debit BankDatabase
dispenseCash CashDispenser

Deposit displayMessage Screen
getInput Keypad
isEnvelopeReceived Depositslot
Credit BankDatabase

BankDatabase validatePIN Account
gethvailableBalance Account
getTotalBalance Account
debit Bcocount
Credit Account

Fig. 7.25 | Collaborations in the ATM system.

@ 2005 Pearson Education, Inc. All rights reserved.

* Interaction Diagrams
— Model interactions use UML

— Communication diagrams

* Also called collaboration diagrams

* Emphasize which objects participate in collaborations
— Sequence diagrams

* Emphasize when messages are sent between objects

@ 2005 Pearson Education, Inc. All rights reserved.

55

* Communication diagrams

— Objects
* Modeled as rectangles

* Contain names in the form objectName : className
— Objects are connected with solid lines

— Messages are passed alone these lines in the direction
shown by arrows

— Name of message appears next to the arrow

< »

@ 2005 Pearson Education, Inc. All rights reserved.

56

execute()

o
1 ATM — :Balancelnquiry

Fig. 7.26 | Communication diagram of the ATM executing a balance inquiry.

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

57

* Sequence of messages in a communication
diagram
— Appear to the left of a message name
— Indicate the order in which the message is passed

— Process in numerical order from least to greatest

< »

@ 2005 Pearson Education, Inc. All rights reserved.

58

: Screen
T 3. displavidessagel message)

: Balancelnquiry

I getBvailableBalance(accountMNumber)
2; getTotalBalance(accountMNumber)

: BankDatabase ———— : Account
—-

|1 zetPvailableBalance()
2.1; getTotalBalance()

Fig. 7.27 | Communication diagram for executing a balance inquiry.

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

* Sequence diagrams

— Help model the timing of collaborations
— Lifeline
* Dotted line extending down from an object’s rectangle
— Represents the progression of time
— Activation
» Thin vertical rectangle

— Indicates that an object is executing

59

[« >

@ 2005 Pearson Education, Inc. All rights reserved.

& Withdrawal 1 Kaypad + Account

0 1
1 Screen | : BankDatabase + : CashDispenser

[i
diplaMessage message) | L 4 x
P ——

getinput() -+
—T

1
getfail dbleBalancs(scoourtNumber)
1 Ll el

§
e

<)

sulficentCashvatablel amount)] I
: h L

e secountMumbe, umount) } '
t 4 = | debit] amount.
e

T
i ;plcn:elh'.hr_ am U-II:|L]

PlayMescapel mestage |

Fig. 7.28 | Sequence diagram that models a Withdrawal executing.

60

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

61

displaytd mag\:s[message)

3
-____.'E__-
=

displayiessagel message)

I
I
I
I
I
I
I
i
I
I
I
i
I
I
I
I
I
1
I
I
i
. i
isEnvelopeReceived () :
: : i |
1 I
1 I
1 I

Jeredit(accountMumber, smount)|

! ! ! B credit] amount
i i i
1 I I
I 1 I I
1] i

I
I
I
I
|
I
I
I
I
I
I
|
I
I
I
I
|
I
|
I
I
I
I
I
I
|
I
I
I
I
|
I
|
I
I
I
I
!

Fig. 7.29 | Sequence diagram that models a Deposit executing.

@ 2005 Pearson Education, Inc. All rights reserved.

62

Starting to Program
the Classes of the
ATM System

® 2005 Pearson Education, Inc. All rights reserved.

63

* To create a consistent drawing that remains the
same each time it is drawn
— Store information about the displayed shapes so that they

can be reproduced exactly the same way each time
paintComponent is called

= =

@ 2005 Pearson Education, Inc. All rights reserved.

64

* Visibility
— Attributes normally should be private, methods invoked by
clients should be public
— Visibility markers in UML
» A plus sign (+) indicates public visibility
* A minus sign (-) indicates private visibility
» Navigability
— Navigability arrows indicate in which direction an
association can be traversed
— Bidirectional navigability

* Associations with navigability arrows at both ends or no
navigability arrows at all can be traversed in either direction

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

65

* Implementing the ATM system from its UML

design (for each class)

Declare a public class with the name in the first

compartment and an empty no-argument constructor

second compartment

Declare instance variables based on attributes in the

Declare references to other objects based on associations

described in the class diagram

Declare the shells of the methods based on the operations

in the third compartment

* Use the return type void if no return type has been specified

ATM

- uzerAuthenticated * Boalean = false

Balancelnquiry

- accountMumber Integer

< »

@ 2005 Pearson Education, Inc. All rights reserved.

66

Account

— acoounthumber - integer
—pin ; Integer
—availableBalancs | Double
~ tatalBalance - Double

+walidateR ING) © Boolesn
+ getBvzilable2 al ance() : Double

+ execuie(}

Withdrawal

- accounthumber - integer
—amount : Double

+ executel)

Deposit
- aceountMumber - Integer
— amount : Double
+ execute(}

BankDatabase

+ authenticatellzer]) - Boolean

+ getAvailableBalance() . Double
+getTotalBalance() Double

+ credit()

+ debit[}

+ get TotalBalancs() : Double
4 credit(}
+ debit()

Screen

+ displaviessage()

Keypad

+getinput() : Integer

CashDispenser

—enunt ; Integer = 500
+ dispenseCashi)
+isSufficientCashvailablef) - Boolean

Depositslot

+iskrvelopsRecerved() - Boolean

Fig. 8.24 | Class diagram with visibility markers.

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

i
CashDispenser ———————

Sereen
e
A
: . _
S Withdrawal

0.1

Containg

Account

- Aocesses/modifies an
zccount balance through

67

Fig. 8.25 | Class diagram with navigability arrows.

@ 2005 Pearson Education, Inc. All rights reserved.

// Class Withdrawal represents an ATM withdrawal transaction

public class Withdrawal %

{

// no-argument constructor

| Class for Withdrawal]

68
Outline

public Withdrawal() <
{

‘ Empty no-argument constructor [

withdrawal.java

} // end no-argument Withdrawal constructor

} // end class Withdrawal

@ 2005 Pearson Education,
Inc. All rights reserved.

1 // Class Withdrawal represents an ATM withdrawal transaction 69

2 public class Withdrawal Outl'ne

3 {

L // attributes

5 private int accountNumber; // account to withdraw funds from

[private double amount; // amount to withdraw withdrawal.java
7 ‘Hh‘“ﬁhmﬁﬁhmﬁhhhﬁhhh

8 // no-argument constructor

9 public Withdrawal () { Declare instance variables

10 {

11 } // end no-argument Withdrawal constructor

12 } // end class Withdrawal

@ 2005 Pearson Education,
Inc. All rights reserved.

// Class Withdrawal represents an ATM withdrawal transaction 70

public class Withdrawal Qutline
{
// attributes

private double amount; // amount to withdraw

1

2

3

4

5 private int accountNumber; // account to withdraw funds from
& withdrawal.java
7

8

// references to associated cbjects
9 private Screen screen; // ATM's screen
10 private Keypad keypad; // ATM’'s keypad

11 private CashDispenser cashDispenser; // ATM's cash dispenser
12 private BankDatabase bankDatabase; // account info database
13

14 // no-argument constructor

15 public Withdrawal ()
16 {

17 } // end no-argument Withdrawal constructor Declare references to other objects
18 } // end class Withdrawal

@ 2005 Pearson Education,
Inc. All rights reserved.

1 // Class Withdrawal represents an ATM withdrawal transaction 71
2 public class Withdrawal Outhne

3 {

4 // attributes

5 private int accountNumber; // account to withdraw funds from
: private double amount; // amount to withdraw withdrawal.java
8 // references to associated cbjects

) private Screen screen; // ATM's screen

10 private Keypad keypad; // ATM's keypad

11 private CashDispenser cashDispenser; // ATM's cash dispenser

12 private BankDatabase bankDatabase; // account info database

14 // no-argument constructor
15 public Withdrawal ()
16 {

17 } // end no-argument Withdrawal constructor

19 // operations
20 public void execute ()

2 {
22 } // end method execute
23 } // end class Withdrawal Declare shell of a method with return
type void
]
® 2005 Pearson Education,
Inc. All rights reserved.
1 // Class Keypad represents an ATM’'s keypad T2
2 public class Keypad Qutline
3 {
4 // no attributes have been specified yet
5
6 // no-argument constructor withdrawal.java
T public Keypad()
8 {
9 } // end no-argument Keypad constructor
10
11 // operations

12 public int getInput()

13 {

14 } // end method getInput
16 } // end class Keypad

@ 2005 Pearson Education,
Inc. All rights reserved.

73

Incorporating
Inheritance into the
ATM System

@ 2005 Pearson Education, Inc. All rights reserved.

74

« UML model for inheritance

— The generalization relationship
* The superclass is a generalization of the subclasses

* The subclasses are specializations of the superclass
« Transaction superclass

— Contains the methods and fields BalanceInquiry,
Withdrawal and Deposit have in common
* execute method
* accountNumber field

@ 2005 Pearson Education, Inc. All rights reserved.

75

Fig. 10.19 | Attributes and operations of classes BalanceInquiry,
Withdrawal and Deposit.

@ 2005 Pearson Education, Inc. All rights reserved.

76

Fig. 10. 20 | Class diagram modeling generalization of superclass
Transaction and subclasses BalanceInquiry,Withdrawal and
Deposit. Note that abstract class names (e.g., Transaction)and
method names (e.g., execute in class Transaction)appear in
italics.

® 2005 Pearson Education, Inc. All rights reserved.

[

| l J/ 1
| | |
Keypad —=—=—— ———== CashDispenser ==
|
DepositSlot Screen
: Withdrawal
I
0.l 0. .l
E tes B
ATM bl Transactior ~—1—— Deposit
I Lo
Authenticates user against
'
| Balancelnquiry
BankDatab
anktatabase - fccessesimodifies an
’ account balanee through
)
Contains

Yol
Account

Fig. 10.21 | Class diagram of the ATM system (incorporating
inheritance). Note that abstract class names (e.g., Transaction)
appear in italics.

= =

@ 2005 Pearson Education, Inc. All rights reserved.

78

A complete class diagram shows all the
associations among classes and all the attributes
and operations for each class. When the number
of class attributes, methods and associations is
substantial (as in Fig. 10.21 and Fig. 10.22), a good
practice that promotes readability is to divide this
information between two class diagrams—one
focusing on associations and the other on
attributes and methods.

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

79

* Incorporating inheritance into the ATM system

design

— If class A is a generalization of class B, then class B extends

class A

— If class A is an abstract class and class B is a subclass of
class A, then class B must implement the abstract methods
of class A if class B is to be a concrete class

ATM

@ 2005 Pearson Education, Inc. All rights reserved.

80

Account

— userfuthenticated - Boolean = false

Transaction
— aecountMumber | Integer

— accountumber - Integer
—pin : Integer

— availableBalancs - Double
— totalBzlance | Double

+ petAccounthlumber()
+ exgcute()

Balancelnquiry

+ execute()

Withdrawal

+ walidatePIN{) - Boolean
+ getPwailableBzlance]) : Double
+ getTotalRalancs) - Double

—amount ; Double

+ execute()

Deposit

+ credit))
+ debit(}
Screen
+ displavivlessagel)
tepad

— amount : Double

+ getinput{} * Integer

CashDispenser

+ execute()

BankDatabase

— Count. - Integer = 500

+ authenticatellser) © Beolean
+ getfivallableBalance() | Double
+ getTatalBalznce]) : Double

+ creditf)

+ debit{)

+ dispenseCazh)
+isSuflidentCashfvailable() - Boolean

Depositslot

+isErvelopeRecsived() * Boolean

Fig. 10.22 | Class diagram with attributes and operations (incorporating
inheritance). Note that abstract class names (e.g., Transaction) and method
names (e.d., execute in class Transaction) appear in italic

[« »|

@ 2005 Pearson Education, Inc. All rights reserved.

1 // Class Withdrawal represents an ATM withdrawal transaction 81
2 public class Withdrawal extends Transaction Outllne
3
4 } // end class Withdrawal Subclass Withdrawal extends
superclass Transaction y ’
Withdrawal.java
=
@ 2005 Pearson Education,
Inc. All rights reserved.
1 // Withdrawal.java 82
2 // Generated using the class diagrams in Fig. 10.21 and Fig. 10.22 Outline
3 public class Withdrawal extends Transaction *
4 Subclass Withdrawal extends
5 Fi - ateribices superclass Transaction
] private double amocunt; // amount to withdraw Withdrawal.java
T private Keypad keypad; // reference to keypad
8 private CashDispenser cashDispenser; // reference to cash dispenser
9
10 // no-argument constructor
11 public Withdrawal ()
12 {
13 } // end no-argument Withdrawal constructor
14
15 // method overriding execute
16 public void execute()
17 {
18 } // end method execute

19 } // end class Withdrawal

@ 2005 Pearson Education,
Inc. All rights reserved.

a3

Several UML modeling tools convert UML-based
designs into Java code and can speed the
implementation process considerably. For more
information on these tools, refer to the Internet
and Web Resources listed at the end of

Section 2.9.

@ 2005 Pearson Education, Inc. All rights reserved.

1 // Abstract class Transaction represents an ATM transaction 84
2 public abstract class Transaction Outline
i { At EeiphE Declare abstract superclass Transaction
5 private int accountNumber; // indicates account involved
6 private Screen screen; // ATM's screen ” "
] . Transaction.java
7 private BankDatabase bankDatabase; // account info database
8
9 // no-argument constructor invoked by subclasses using super()
10 ublic Transaction
= 2 (10f2)
12 } // end no-argqument Transaction constructor
13
14 // return account number
15 public int getAccountNumber ()
16 {
17 } // end method getAccountNumber
18

] [

@ 2005 Pearson Education,
Inc. All rights reserved.

19
20
21
22
23
24
25
26
27
28
29
30

31 } // end class Transaction

// return reference to screen 85
public Screen getScreen() Outhne

{

} // end method getScreen

// return reference to bank database Transaction.java
public BankDatabase getBankDatabase()
{

} // end method getBankDatabase (2 of 2)

// abstract method overridden by subclasses

public abstract void execute(); \

‘ Declare abstract method execute

@ 2005 Pearson Education,
Inc. All rights reserved.

